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Abstract. In this paper we extend a standard affine optical flow model
to 4D and present how affine parameters can be used for estimation of
3D object structure, 3D motion and rotation using a 1D camera grid.
Local changes of the projected motion vector field are modelled not only
on the image plane as usual for affine optical flow, but also in camera
displacement direction, and in time. We identify all parameters of this
4D fully affine model with terms depending on scene structure, scene
motion, and camera displacement. We model the scene by planar, trans-
lating, and rotating surface patches and project them with a pinhole
camera grid model. Imaged intensities of the projected surface points
are then modelled by a brightness change model handling illumination
changes. Experiments demonstrate the accuracy of the new model. It
outperforms not only 2D affine optical flow models but range flow for
varying illumination. Moreover we are able to estimate surface normals
and rotation parameters. Experiments on real data of a plant physiology
experiment confirm the applicability of our model.

1 Introduction

Object structure and motion estimation from camera image sequences is a typical
and well explored computer vision topic and many different solutions exist for
different application prerequisites. We target at a typical plant physiology lab
situation (see e.g. [1]), where e.g. growth, i.e. divergence of the motion vector field
or curvature production in terms of spatial derivatives of the rotation vector field,
of plant organs are parameters of interest. In order to analyse derivatives of the
motion field, motion and structure of plant organs – here leaves of seedlings and
small plants – need to be measured in high spatial (sub-millimeter) and temporal
resolution (several minutes). Highest accuracy is thus a prerequisite here, as
derivatives of the motion field are the final signal of interest and rigid motion
of leaves is much larger than motion due to e.g. growth. Such measurements
help unravelling bio-chemical processes underlying plant growth (see e.g. [2]) and
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thus give hints for seed, feed, and food production or plant breeding. However,
calculation time is less of an issue, as analyses may be calculated off-line.

A typical lab setup uses a single camera on a moving stage looking downward
on the plant, instead of using multiple cameras. The advantage of such a setup
is that the moving stage allows to take images from many equidistant camera
positions, typically at several mm or even sub-mm distances depending on object
size. Further calibration needs only be done for a single camera and the camera
may be moved away when not needed as plants should not be shaded by mea-
surement equipment. One loop through all camera positions takes much shorter
(seconds) than time between two acquisitions at the same position (minutes).
Consequently we may regard the acquired data as if it came from a synchro-
nized, fine spaced 1D grid of cameras. This camera grid equidistantly samples
a 4D space spanned by the sensor coordinates x and y, camera position s and
time t.

Such 4D data has already been exploited in literature (e.g. [3, 4]). There 4D
optical flow with affine components is calculated and all components are in-
terpreted in terms of 3D translation, 3D position and surface normals of the
imaged object. Good performance is reported for translating objects, however
rotating objects lead to severe errors. Here we present a solution to this problem
by modelling rotation and extending the affine flow to s- and t-derivatives of
the flow-field. The model from [3, 4] is valid for instantaneously moving cameras
observing moving surfaces. This is unlike preceding work (e.g. [5–8]) where either
an observed surface moves, or a camera, but not both. The patch-based affine
model also differs from other frameworks for motion and stereo analysis, where
point-based models are applied (e.g. [9–12]) or global minimization in 3D scene
space is addressed (e.g. [13, 14]).

1.1 Approach

The standard 2D affine optical flow model (cmp. e.g. [15])

∇I
[(

ux
uy

)
+

(
a11 a12
a21 a22

)(
∆x
∆y

)]
+ It = 0 (1)

defines parameters in image coordinates, i.e. flow parameters. Here, the meaning
of the flow parameters u. and a.. will be explained in world coordinates and
parameters of imaged moving surface patches.

Following [4] an image sequence may be interpreted as data in a 3D space
where a brightness change constraint defines a linear model for intensity changes
due to apparent local object motion. This motion is called optical flow. When
the data is acquired by a single fixed camera, i.e.x-y-t-space, visible motion may
be explained by object motion. When acquired by a moving camera looking at
a fixed scene, i.e.x-y-s-space, displacements (then usually called disparities) are
anti-proportional to local depth. This is known as structure from camera motion
(e.g. [16]). Here, we interpret the camera position s as additional dimension of the
data. Hence all image sequences acquired by a 1D camera grid can be combined
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to sample a 4D-volume in x-y-s-t-space. Brightness changes in this space are
modelled as total differential of the intensity data.

The presented 4D fully affine optical flow model can be seen as an extended
version of (1). But here, affine modelling not only covers linear changes in local
pixel coordinates ∆x, and ∆y, but also in camera motion direction and time,
i.e. additional ∆s and ∆t terms. In order to explain 3D structure and 3D motion
in world coordinates by the estimated flow parameters, 3D dynamic surfaces
patches are projected into the image by a pinhole camera (cmp. Sec. 2). A crucial
point here is the correct handling of neighbor locations. We model it by back-
projection of the pixel grid to the surface in the scene (see Secs. 2.4 and 2.5). A
detailed derivation can be found in Section 2.

In order to evaluate the model we use a parameter estimation procedure as
proposed in [4]. It is a total least squares (TLS) estimation scheme ideally suited
for estimation when Gaussian noise is present. No robust statistics or regular-
ization terms are applied. Such terms may conceal model errors and therefore
are not suitable for model evaluation. Adaptations needed here are presented in
Section 3.

Quantitative experiments (Section 4) use synthetic data with ground truth
available. For systematic evaluation of accuracies we use pinhole-projected 32bit-
float sinusoidal patterns suppressing otherwise unavoidable quantization noise.
For more realistic scenes with ground truth available we use simple geometric
structures moving in a known way rendered by POV-Ray [17] in 8bit-integer
accuracy. We compare motion results to range flow [18, 3] in order to give an
intuition of the accuracies achievable using a simple TLS estimator. In contrast
to our model, range flow needs depth information as input and estimates 3D
translation only.

An experiment with real data showing a small tobacco leaf visually demon-
strates the increased accuracy compared to other methods. Only the new method
yields plausible results.

1.2 Contribution

The current paper is an extension to a series of papers [3, 4]. Our contributions
are the following: (1) Derivation of 4D affine flow parameters (∆s- and ∆t-
terms). (2) Back-projection of the pixel grid to an imaged surface respecting
camera position and time. (3) Modelling rotational motion of surface patches.
(4) A thorough model evaluation focusing on rotation effects.

Although our scheme can readily be used to estimate motion and shape
deformations of plant leaves, we do not aim at presenting a final method yet.
In our view a method not only needs accurate modelling but also needs well
adapted discretization, estimation schemes, regularization etc. Here we focus on
modelling, only.
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2 Model derivation

2.1 Surface patch model

Following [4] we model a surface patch at world coordinate position (X0, Y0, Z0)
as a function of time t byX

Y
Z

 =

X0 + UXt+∆X
Y0 + UY t+∆Y
Z0 + UZt+ ZX∆X + ZY∆Y

 (2)

where ZX and ZY are surface slopes in X- and Y -direction for time t = 0
and U = (UX , UY , UZ) is the velocity of the patch. The surface normal is then
n = (ZX , ZY ,−1).

2.2 Rotation

We define rotation of a surface patch by angular velocity vectorΩ = (ΩX , ΩY , ΩZ)T

located at its central point X0 = (X0, Y0, Z0)T. Velocity U of points on the sur-
face patch is then determined by

U = N +Ω ×∆X (3)

with translational velocity N = (NX , NY , NZ)T , distance to the rotation center
∆X and angular velocity Ω.

Equation (3) defines rotation around the surface patch center. For general
rotational motion this is not sufficient, as the true center of rotation may not
coincide with the patch center. This leads to accelerated motion of the patch
center

U = N +At+Ω ×∆X. (4)

with accelerationA. We address constant acceleration only, whereas acceleration
coming from rotation is non-constant. This could be modelled by estimation of
the true rotation center introducing 3 additional parameters analogue to (3).

2.3 Projective Camera Model

We use pinhole cameras at world coordinate positions (s, 0, 0), looking into Z-
direction (

x
y

)
=
f

Z

(
X − s
Y

)
(5)

Sensor coordinates x, y are aligned with world coordinates X,Y . Camera posi-
tion space is sampled equidistantly using a 1D camera grid. We combine data
acquired by all cameras into one 4D data set equidistantly sampling the contin-
uous intensity function I(x, y, s, t).
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2.4 Pixel-centered view

Parameter estimation at a 4D pixel x0 = (x0, y0, s0, t0) is done using the acquired
image data I(x) := I(x, y, s, t) in a local neighborhood Λ, with x := (x, y, s, t)T .
Consequently we need to know surface position X for each 4D pixel, i.e.X(x).
Using (5) we know (

X(x)
Y (x)

)
=
Z(x)

f

(
x
y

)
+

(
s
0

)
(6)

In order to derive an expression for Z(x) we fit a tangent plane with surface
normal n = (ZX , ZY ,−1)T to the point X(x). The intersection of this tangent
plane with the Z-axis is then Z(0, 0, 0, t), and Z(0, 0, 0, t) = Z(0) + Ztt for a
constantly translating plane, where 0 := (0, 0, 0, 0)T . Consequently Z(x) can be
expressed as

Z(x) = Z(0) + ZXX(x) + ZY Y (x) + Ztt⇔ Z(x) =
Z(0) + ZXs+ Ztt

1− ZX x
f − ZY

y
f

(7)

where we used (6) to substitute X(x) and Y (x). Combining (6) and (7) yields

X(x) = Z(0)+ZXs+Ztt
f−ZXx−ZY y

x
y
f

+

 s
0
0

 . (8)

Equation (8) extends the formulation in [4], where X only depends on local
image coordinates x and y.

2.5 Projecting the pixel grid to the surface

A pixel x in the local neighborhood Λ used for parameter estimation is given by
x = x0+∆x = (x0+∆x, y0+∆y, s0+∆s, t0+∆t)T . The surface patch centerX0

by definition is the projection of the neighborhood center point x0 to the surface.
Thus neighbor points of X0 on the surface given by ∆X = (∆X,∆Y,∆Z) are
projections of the cameras pixel grids to the surface. We need to derive ∆X(∆x).
To stay on the surface, we model ∆Z = ZX∆X+ZY∆Y , cmp. (2). From (2) we
know

∆X = X −X0 −U t (9)

where X is a point on the surface at a given point in time t, X0 is the surface
patch center at time t0 = 0, and ∆X is the distance between X and the point
X0 + U t where the patch center moved to. The distance between X and X0

can expressed by the linearisation

X −X0 =
∂X

∂x
∆x+

∂X

∂y
∆y +

∂X

∂s
∆s+

∂X

∂t
∆t . (10)

Partial derivatives of X(x) can be derived from (8).
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2.6 Brightness Change Model

Point correspondences in our multi-dimensional data set are derived via an
estimation analogue to common structure-from-camera-motion or optical-flow
methods. Thus we employ a differential brightness constraint modelling inten-
sity changes dI of a surface element for the 4D data set I(x, y, s, t). dI equals

Ixdx+ Iydy + Isds+ Itdt = I(g1 + g1,x∆x+ g1,y∆y + g2t)dt (11)

We denote I∗ = ∂I
∂∗ for derivatives of the image intensities I. In the following we

use notation g = (g1+g1,x∆x+g1,y∆y+g2t). The left hand side of Equation (11)
is derived from dI by chain rule. The right hand side of (11) models spatially
varying brightness changes. It boils down to a local spatio-temporal series expan-
sion of varying illumination times bidirectional reflectance distribution function
(BRDF). We refer to [3] for a detailed derivation.

2.7 A 4D-Affine Model

We combine the above equations in order to derive the new 4D optical flow
model and a geometric interpretation of its parameters. Again following [4] we
project the moving surface patch model to the sensor plane by substituting (2) in
(5) and calculate the differentials dx and dy for a given surface location (i.e. for
constant ∆X and ∆Y ).(

dx
dy

)
=
f

Z

(
(UX − UZ xf )dt− ds

(UY − UZ yf )dt

)
(12)

From (2) we know that Z depends on the unknown ∆X and ∆Y : Z = Z0 +
UZ∆t+ ZX∆X + ZY∆Y . We therefore rephrase f/Z using (9) and (10)

f/Z = −ν − b1∆x− b2∆y − b3∆s− b4∆t (13)

with ν = − f
Z0
, b1 = ZX

Z0c
, b2 = ZY

Z0c
, b3 = f

Z0

ZX

Zc , b4 = f
Z0

Zt

Zc

and c = 1− ZX x
f − ZY

y
f .

(14)

The remaining substitution steps are then as follows: first in (4) substitute ∆X

by (9)–(10), then in (12) substitute U by (4) and f
Z by (13). Finally substitute

in the brightness change model (11) dx and dy by (12). Ignoring higher order
terms yields representations of the elements of the 4 dimensional optical flow
model

∇I

(uxdt + νds
uydt

)
+

(
a11dt + b1ds a12dt + b2ds a13dt + b3ds a14dt + b4ds

a21dt a22dt a23dt a24dt

)∆x
∆y
∆s
∆t




+Isds + Itdt = Igdt
(15)
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with parameters

ux = −ν
(
NX − x0

f NZ

)
uy = −ν

(
NY − y0

f NZ

)
a11 = −ν

[
ΩY

∂Z
∂x −ΩZ

∂Y
∂x −

x0
f

(
ΩX

∂Y
∂x −ΩY

∂X
∂x

)
− NZ

Z0

]
−b1

(
NX − x0

f NZ

)
a12 = −ν

[
ΩY

∂Z
∂y −ΩZ

∂Y
∂y −

x0
f

(
ΩX

∂Y
∂y −ΩY

∂X
∂y

)]
−b2

(
NX − x0

f NZ

)
a13 = −ν

[
ΩY

∂Z
∂s −ΩZ

∂Y
∂s −

x0
f

(
ΩX

∂Y
∂s −ΩY

∂X
∂s

)]
−b3

(
NX − x0

f NZ

)
a14 = −ν

[
ΩY

∂Z
∂t −ΩZ

∂Y
∂t −

x0
f

(
ΩX

∂Y
∂t −ΩY

∂X
∂t

)
+
(
AX − x0

f AZ

)]
−b4

(
NX − x0

f NZ

)
a21 = −ν

[
ΩZ

∂X
∂x −ΩX

∂Z
∂x −

y0
f

(
ΩX

∂Y
∂x −ΩY

∂X
∂x

)]
−b1

(
NY − y0

f NZ

)
a22 = −ν

[
ΩZ

∂X
∂y −ΩX

∂Z
∂y −

y0
f

(
ΩX

∂Y
∂y −ΩY

∂X
∂y

)
− NZ

Z0

]
−b2

(
NY − y0

f NZ

)
a23 = −ν

[
ΩZ

∂X
∂s −ΩX

∂Z
∂s −

y0
f

(
ΩX

∂Y
∂s −ΩY

∂X
∂s

)]
−b3

(
NY − y0

f NZ

)
a24 = −ν

[
ΩZ

∂X
∂t −ΩX

∂Z
∂t −

y0
f

(
ΩX

∂Y
∂t −ΩY

∂X
∂t

)
+
(
AY − y0

f AZ

)]
−b4

(
NY − y0

f NZ

)
(16)

The partial derivatives of world coordinates in (16) can be derived from (8),
b. and ν are given in (14).

2.8 The Range Constraint, Zt, b4, and why (8) still holds under
rotation

Flow parameter b4 (Eq.(14)) depends on Zt, the partial t-derivative of Z. We are
not explicitly interested in Zt, thus we want to express it using parameters we
are interested in. We know that UZ := dZ/dt and thus that the time derivative
of the first equation in (7) yields the range constraint known from [18]

Zt = UZ − ZXUX − ZY UY (17)

valid for translating planes, i.e. for constant surface slopes ZX and ZY . Obviously
surface slopes change when a surface rotates and the range constraint becomes

Zt = UZ − ZXUX − ZY UY −XZX,t − Y ZY,t . (18)

ZX,t and ZY,t are t-derivatives of ZX and ZY .
Equation (7) was derived for constant ZX and ZY . For rotating surfaces we

approximate them via first order Taylor expansions ZX(t) = ZX(0) +ZX,tt and
ZY (t) = ZY (0) + ZY,tt and derive for (7)

Z(x) = Z(0) + ZX(t)X(x) + ZY (t)Y (x) + Ztt
⇔ Z(x) = 1

c (Z(0) + ZX(0)s+ (Zt + ZX,tX(x) + ZY,tY (x))t)
(19)

Substituting Zt using (18) yields

Z(x) =
1

c
(Z(0) + ZXs+ (UZ − ZXUX − ZY UY )t) =

Z(0) + ZXs+ Z̃tt

c
(20)

where now Z̃t is defined by the standard range constraint (17). We conclude that
(8) still holds for a first order model of rotational motion, if Z̃t ignores surface
slope changes due to rotation. Consequently Zt in (14) also becomes Z̃t.
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3 Parameter Estimation

We calculate image derivatives by optimized 5-tab derivative filter sets presented
in [19] and then estimate parameters in three steps. 1. We solve for 4D affine
optical flow parameters ν, b1, . . . , b4, ux, uy, a11, . . . , a24 and brightness change
parameters g1, g1,x, g1,y, g2 using a usual local total least squares estimator (see
[4] for details). 2. We solve for depth Z0, and surface normals ZX and ZY , and
Zt using (14), where focal length f has to be known e.g. from a calibration step.
This allows to calculate c from (14) and partial derivatives of world coordinates
from (8). 3. We solve for translation N , and rotation Ω if desired, using the
equations in (16) or – as reference methods – using the range flow method from
[3]. Acceleration A can only be estimated up to 1 degree of freedom as we
have only 2 equations (the ones for a14 and a24) for 3 parameters AX , AY , AZ .
(16) and (14) being an overdetermined system of equations, there are several
ways to solve for N and Ω using a standard least squares estimation scheme.
For our experiments we select the following submodels by selecting some or
all equations from (16) and (14), or by removing terms when parameters like
rotation or acceleration are not estimated. This is equivalent to not modelling
these parameters or setting them to zero. We use the following submodels

2D OF trans. estimates N only, using equations for ux, uy, a11, a12, a21, a22 (i.e.
the method from [3]).

2D OF rot. estimates N and Ω using equations for ux, uy, a11, a12, a21, a22.
2D OF trans. and ... and 2D OF rot. and ... using additional equations indi-

cated by ...
4D OF trans. estimates N only, using all 11 equations containing motion infor-

mation, 10 from (16) and 1 from (14), i.e. the one for b4.
4D OF rot. estimates N and Ω only, using the 11 equations.
4D OF estimates N , Ω, and A using the 11 equations.

Parameters that are not solved for are set to zero. 4D OF uses two equations
more than 2D OF rot. and a13, a23, b4 but estimates A in addition. We therefore
get identical results for N and Ω using the two models. Thus we do not show
results for 4D OF in the experiments below.

4 Experiments

In a first experiment we use synthetic sinusoidal sequences for systematic error
analysis. Then the different models are compared on more realistic data with
ground truth, i.e. , a moving cube rendered with POV-Ray [17]. Finally we show
results for a rotating plant leaf.

4.1 Sinusoidal Pattern

For systematic error analysis we render a surface patch with sinusoidal pat-
tern, where geometry and intensities mimic typical settings used in our ac-
tual lab experiments with plants. The 32-bit float intensity values are in the
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4D OF trans. 4D OF rot. Range Flow

Fig. 1. Average angular error (AAE) versus increasing NZ (left) and σn (right).
a, b: data without rotation, c, d: with rotation.

range [50; 150]. Input sequences are generated with surface patch parameters
Z0 = 100 mm, ZX = 0.6, and ZY = −0.5, and motion parameters N ≈
(0.0073,−0.0037,−0.3)T mm/frame and ω = 0.003 degree/frame around ro-
tational axis v = (2, 3, 2)T, i.e. , Ω = ωv. In each experiment we vary only one
of these parameters. The synthetic sensor contains 501× 501 pixels with width
and height 0.0044 mm. The focal length of the projective camera is set to f = 12
mm. We generate data for 9 cameras, positioned horizontal as a 1D, equidistantly
spaced camera grid with displacement of 0.5 mm. In order to keep optical flow
in camera displacement direction below 1 pixel/displacement, we preshift the
data by 13 pixel/displacement. The effective image size shrinks to 301×301 pixel
due to border effects. Neighborhood Λ is implemented by a Gaussian filter with
size 65×65×5×5 and standard deviations 19×19×1×1 in x, y, s, t-directions.
In order to compare performance of models, we use the average angular error
[20]

AAE =
1

N

N∑
i=1

arccos
(
rt(i)

Tre(i)
)

(21)

for N pixel with a minimum border distance of 60 pixel, true motion rt and esti-
mated motion re, with r = (NT, 1)T for translation and r = (ΩT, 1)T for rota-
tion. Figure 1 shows average angular errors of translational motion estimates for
sequences without (a,b) and with (c,d) rotation. We show errors for increasing
translational motion NZ in Figs. 1a and c and for increasing standard deviation
of noise σn in Figs. 1b and d. Figures 1a and b demonstrate that all models
perform almost equally well for sequences without rotation. Models using more
affine parameters (4D OF trans./rot., and 2D OF rot. and a13, a23, b4) perform
best. Range flow performs only slightly better for low noise sequences. In case of
rotation (Figs. 1c and d) range flow and the translational models yield high er-
rors compared to rotational models. However, comparing rotational models, 4D
OF rot. performs worst. This indicates that modelling A in the equations for a14
and a24 ((16)) or not using a14 and a24 (i.e. 2D OF rot. and a13, a23, b4) is ben-
eficial. In case of noise rotational models using 4D affine terms (2D OF rot. and
a13, a23, b4 and 4D OF rot.) show best performance up to σn = 10. 4D OF trans.
shows considerable better performance than Range Flow, despite for NZ = 0 and
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Fig. 2. a: AAE of N versus ω and b–d: AAE of Ω versus b: ω, c: NZ and d: σn.

no noise, and performs as good as the best rotational models for 1 < σn < 10. In
Fig. 2 we compare average angular errors of translational (Fig. 2a) and rotational
(Fig. 2b–d) motion parameters for different rotation models. Translational mod-
els and Range Flow are shown for reference in Fig. 2a. Figures 2c and d show
angular errors of rotational parameters for a sequence with rotation and increas-
ing NZ and σn, respectively, i.e. , the Ω counterparts of Figs. 1c and d.

The figures demonstrate that incorporating the affine parameters a14 and a24
in 4D OF rot. without modelling of acceleration significantly increases errors.
Figures 2a and b show average angular errors of translational and rotational
parameters for sequences with increasing ω. Rotational models without a14 and
a24 perform similar and up to three orders of magnitude better than range flow
and the translational models.

We conclude that modelling rotation yields almost always significantly lower
or at least similar errors as the translational models and range flow. Using a14
and a24 without modelling acceleration A should be avoided.

4.2 Synthetic Cube

The synthetic cube sequence allows us to compare models on more realistic data
with ground truth available. The cube center is at Z = 600mm, moves with
N = (−0.2, 0,−1)T mm/frame, and rotates around its Y -axis with ω = 0.4 de-
grees/frame. It is covered with a noise pattern in order to make local estimation
reliable. Neighborhood Λ is the same as for the sinusoidal sequences. The 1D
camera grid contains 9 cameras with a displacement of 5 mm. Figures 3a–d show
first and last frame of the central camera, two regions where errors are evalu-
ated, and ground truth motion, respectively. Structure estimation accuracies for
different choices of Λ and optical flow types are given in Tab.1. We see that using
surface normals, i.e. affine terms b., and data from more than one point in time in
the estimation improves accuracy by more than 1 order of magnitude. Accuracy
is then comparable to typical laser scanning range sensors, e.g. Sick IVP Ruler
E600 with 0.2mm resolution. Motion estimates of two translational models, one
rotational model and Range Flow are shown in Figs. 3e–h. The errors are am-
plified by a factor of 5 for better comparison of the models. The estimates of 2D
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Fig. 3. Cube moving towards camera with rotation. Top row: First (a) and last (b)
input frame, and central frame with evaluation areas (c). d: ground truth motion.
Motion estimates U with amplified errors. e: 2D OF trans., f: Range Flow, g: 4D OF
trans., and h: 2D OF rot. and a13, a23, b4. i: Rotational motion Ω estimated via 2D
OF rot. and a13, a23, b4.

Table 1. Average surface distances in mm (mean ± std. deviation). ’Left’ and ’right’
refer to the areas of interest depicted in Fig.3c.

Neighborhood Λ flow type Error ’left’ Error ’right’

65 × 65 × 1 × 1 not affine 2.77 ± 0.91 3.10 ± 1.34
65 × 65 × 1 × 1 affine 0.15 ± 0.07 0.29 ± 0.16
65 × 65 × 5 × 5 affine 0.08 ± 0.03 0.21 ± 0.11

OF trans. clearly show large errors, where estimates on the right side of the cube
point in Z-direction, estimates on the left side of the cube are not visible be-
cause they point inwards the cube. Estimates of Range Flow are more accurate,
but distorted near borders of the cube. Models 4D OF trans. and 2D OF rot.
and a13, a23, b4 yield more accurate results. Estimates of the translational model
are still distorted, mainly on the left side of the cube. Estimation results of the
rotational model best match the ground truth. Fig. 3i shows a rendered top view
of the cube with estimation results of rotational motion using the model 2D OF
rot. and a13, a23, b4. The estimates clearly recover the true motion.
Table 2 shows angular errors for the regions depicted in Fig. 3c which quan-
titatively confirm the visual impression of the rendered results. 2D OF trans.
performs better when b4, a13 and a23, or all three terms are additionally used
for estimation. Otherwise estimates are heavily distorted. The same is true for
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Table 2. Average angular error (AAE) and standard deviations in degrees of transla-
tional and rotational motion parameters of regions on left and right side of the cube
(see Fig. 3c). Errors or standard deviations above 1◦ (AAE) are indicated in red, below
0.1◦ (AAE) in green.

motion model affine parameters
AAE left region AAE right region

translation rotation translation rotation

Translation 2D OF 112 ± 1.01 n/a 19.8 ± 0.67 n/a
2D OF + b4 1.22 ± 0.43 n/a 0.32 ± 0.20 n/a

2D OF + a13,a23 1.72 ± 1.28 n/a 1.06 ± 0.57 n/a
2D OF + a13,a23,b4 0.91 ± 0.64 n/a 0.58 ± 0.33 n/a

4D OF 0.91 ± 0.64 n/a 0.58 ± 0.33 n/a

Translation 2D OF 6.85 ± 6.24 0.018 ± 0.009 1.73 ± 1.37 0.004 ± 0.011
and 2D OF + b4 0.52 ± 0.19 0.017 ± 0.009 0.27 ± 0.17 0.004 ± 0.011

rotation 2D OF + a13,a23 0.93 ± 0.37 0.017 ± 0.009 0.19 ± 0.11 0.004 ± 0.011
2D OF + a13,a23,b4 0.67 ± 0.29 0.017 ± 0.009 0.22 ± 0.13 0.005 ± 0.011

Range Flow 8.86 ± 0.69 n/a 1.88 ± 0.31 n/a

translation estimates with models also estimating rotation. Rotation estimates
are equally well for all rotation models. Errors of Range Flow are lower than for
2D OF trans., but significantly higher than for models incorporating more affine
terms.

4.3 Plant Leaf

Figure 4a shows one frame of a tobacco plant leaf input sequence. The leaf is
textured with watercolour to reduce errors coming from the aperture problem
(cmp. [1]). The scene is illuminated by directed infrared light emitting diodes
from top causing illumination changes on the leaves. The maximal width of
the leaf is approximately 20 mm. Images are taken by a movingstage-based 1D
camera grid with 9 positions at 1 mm distance (see Sec. 1). Sampling rate of the
camera per position is one image every 2 minutes. Sensor size is 1600×1200 pixel.
Neighborhood Λ is implemented using a Gaussian filter with size 121×121×5×5
and standard deviation 41× 41× 1× 1 in x, y, s, t-direction.

The big leaf on the right rotates upward around its node where it is attached
to the stem (i.e. approx. around the Y -axis). This results in a visible motion to-
wards the camera and to the left. Moreover the leaf unrolls along its midvein and
folds its sides up. Figure 4b shows estimated structure and surface normals. Vis-
ibly the true structure is well recovered. Translation estimates for the presented
models are shown in Fig. 4c–e. Range Flow [21] significantly overestimates the
motion (Fig. 4c). With the purely translational motion model 2D OF trans. [3]
estimation results are heavily corrupted (Fig. 4d). This model apparently inter-
prets shrinkage of the projected leave length in x-direction due to rotation as
being caused by motion away from the camera. The rotational model 2D OF rot
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Fig. 4. Plant Leaf Sequence. a: Central frame of central camera. b: Estimated structure
and surface normals. Motion estimates for c: Range Flow for Varying Illumination, d:
2D OF trans. and e: proposed new model 2D OF rot and a13,a23 and b4. f: estimated
rotational velocity.

and a13,a23 and b4 yields a severely improved motion vector field, even though
motion still seems to be overestimated. Figure 4f shows estimated rotational
motion vectors. Rotation around the node is well visible. Unrolling and folding
of the leaf can be recovered by analysing changes in the rotation vector field.
Making this possible was the main goal of the presented work (cmp. Sec.1).

5 Summary and Conclusions

In this paper we presented a 4D affine optical flow model and how the parame-
ters of this model can be explained by real world parameters. Based on a rigid
surface patch we modelled translation, acceleration and rotation. The rotational
model improves estimation results in almost all cases and additionally allows to
estimate rotational parameters which is of high interest for understanding plant
physiology. Synthetic experiments showed that modelling acceleration is not suf-
ficient to estimate rotation reliably and should therefore not be used if rotation
occurs in the sequence. The 4D affine model and its explanation of real world
parameters improved accuracy of motion estimates on synthetic and real data
compared to Range Flow and previous 2D OF affine models. In order to increase
accuracy further and cope with different scenarios than plant leaf estimation,
the main focus in future research will be on developing a more sophisticated
estimator. Furthermore the estimator should be able to handle large motions
coming from camera displacement. This is a prerequisite for using full camera
arrays, like e.g. [22], instead of moving stages, and adapting the affine optical
flow model to other application areas.



14

References
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